Department of Physics

Programme outcome for Honours

PO1 Logical thinking : A graduate Physics honours student will be capable of think and analyze logically with scientific view.

PO2 Laboratory skill : Student will be capable of applying the scientific methods to design , perform and demonstrate experiments with skill.

PO3 Communication skillts : Students will be capable of communicating scientifically and can convince any arguments logically to others.

PO4 Environmental aspects : The roots of most of the recent environmental problems are explained by the theories underlying in Physics. A physics student may be able to find out the causes of various environmental crisis to overcome the harmful situations.

PO5 Ethics : A Physics student will be able to appreciate the impact of physics in social, economical, and environmental issues

PO6 Social interactive skill : A Physics students will be able to identify, analyze and solve the various problems faced by the society in daily life which can be justified by the underlying theories of Physics.

PO7 Self improvement and lifelong learning: A Physics graduate will have confidence in his ability and will be motivated for lifelong learning.

PSO (Programme specific outcome for Physics Honours)

PSO1: Graduate Physics honours students will acquire clear knowledge in mathematics.

PSO2: Students will get clear ideas about the basic mechanism of the instruments and machines used in everyday life.

PSO3: Physics students will learn various computer languages.

PSO4: Physics students will aware of simple and complex electrical circuits and networks.

PSO5: Students will have knowledge of electronics, IC, gates etc help the Physics graduate students to establish themselves in modern smart technological world

<u>Course outcome (Physics Department)</u>

For the year 2018-2019,2019-2020,2020-2021

Year	Papers	Course	Outcomes
Semester 1	CC1 (Mathematical Physics I)	CO1	 The topics of the course are effective for the students because It includes basic mathematical physics. develops required mathematical skills to solve problems in other fields of theoretical physics. It helps the students to grow the programming skill to solve the different kind of physics problems.
	CC2 (Mechanics)	CO2	 Students will get a deep understanding of Laws of mechanics differential equations dynamics of cl. mechanics the experiments relating the laws of mechanics.
Semester 2	CC3 (Electricity & Magnetism)	CO3	This course is very beneficial for the students because

		 It gives the idea of interactions of charged and magnetic materials and a fundamental understanding of electromagnetic phenomena. Students can understand the basic mathematical concepts related to electromagnetic vector fields, functions of different circuits and networks. Experiments with electrical circuits , network theorem and magnetism strengthen their theoretical studies.
CC4 (Waves & Optics)	CO4	Students will acquire the concrete idea about different types of oscillating nature and characteristics of waves. it gives a thorough learning of functions of waves in optics.

	•	The theoretical
	•	The theoretical
		studies become
		strengthen by
		the
		experiments
		relating various
		phenomena of
		waves.

Year	Papers	Course	Outcomes
Semester 3	CC5 (Mathematical Physics II)	CO5	Students will be familiarized with different types of differential equations They will also be able to solve Fourier series and also be familiarized with some special type of integration. They will also be familiarized with computational language to solve the above equations.
	CC6 (Thermal Physics)	CO6	 Students will learn the foundation of thermal Physics. The ideas about the systems in stable equilibrium. Laws of thermodynamics along with entropy . about Statistical mechanics and Kinetic theory. about the different measuring devices which

		show variations with tempe- rature. • They also learn the process of calibration.
CC7 (Digital Systems and Applications)	CO7	 Students will get the basic idea about technique of building integrated circuits, logic gates, Boolean algebra etc. the constructions of combinational and sequential circuits using logic circuits and their applications in laboratory.
SEC-A (Basic programming and Scientific word processing)	CO23	This course is very effective to the students because it includes from algorithms, flowcharts, basic programming in FORTRAN/C, to Gnuplot, introduction to LaTeX word processor, equation representation, picture environment etc.

	SEC-A (Electrical circuits and Network Skills)	CO24	Students will understand the electrical circuits, electrical drawing , theories and operations of generators, transformers etc, solid state devices and elec trical wiring . This course is very effective and beneficial for the students .
Semester 4	CC8 (Mathematical Physics-III)	CO8	Students will learn in details of complex numbers and how to solve complex integration. They will also learn the basics of probabilities and special theory of relativity. Students will learn to solve the problems studied in theory by the application through programming

CC9			CO9	Students will learn the
(Elements	of	Modern		history behind the
Physics)				development of
				quantum mechanics. It
				also develops the
				mathematical
				framework for studying
				quantum mechanics
				which has various
				applications in other
				fields of physics. The
				course also provides
				basic concept of
				structure of nucleus and
				Radioactivity
				nhenomena
				Experiments based on
				theoretical studies help
				students to get a clear
				students to get a clear
				concept of the course.

CC10	CO10	After the completion of
(Analog systems &		the course. Students will
Applications		be able to :
rippileutions		• learn about the
		significance of
		significance of
		electric
		components,
		• various devices
		and their
		operations
		• can analyze dc
		circuits and
		relate ac models
		of
		semiconductor
		devices with
		their physical
		operations
		• understand
		rectification.
		amplification
		transistor etc.
		• design and
		analyze of
		alactronic
		circuita
		ODAMD
		OFAMIF,
	0005	amplifiers etc.
SEC-B	CO25	This course helps the
(Computer Algebra System		students to be competent
& Figure Drawing Skill)		with elementary
		symbolic computation
		using CAS, figure
		generation using
		drawing tools like xfig,
		latexdraw etc, .
SEC-B	CO26	Students will get an idea
(Renewable Energy and		about the renewal of
Energy Harvesting)		various types of non-
		conventional energy
		sources. Students learn
		the energy harvesting
		procedure from solar
		energy wind energy
		ocean geothermal
		securi, geomerman,

	hydro, piezoelectric and electromagnetic energy.

Year	Papers	Course	Outcomes
Semester 5	CC11 (Quantum Mechanics & its application)	CO11	 Students will get an idea of difference between classical & quantum mechanics. They will be familiar with various aspects of quantum mechanical approach and its applications. Solutions of Schrodinger wave equation for various atomic and molecular systems make the students to correlate with the theory.
	CC12 (Solid state)	CO12	 In this branch of study, students will learn to apply the methods of quantum mechanics, crystallography and electromagnetism in real crystalline systems. They will come to know the reason underlying the interpretation of the physical properties of solids. At the end of the course students will

		learn crystal structure, lattice dynamics, magnetic properties and superconductivity.
DSE-A1 (Advanced Mathematical Methods-I)	CO15	 Students will acquire knowledge about the fundamental concepts of a special topic (linear Algebra) in mathematical physics. will be familiar with basic calculus and will be able to solve the basic differential equations by computation.
DSE-A1 (Communication electronics)	CO16	 Students will be taught to analyze and design noise-free analog and digital communication systems. They will have a clear concept of different modulation techniques. They will have a clear concept of satellite communication which is currently a very important topic and idea about GPS navigation system.

	DSE-B1 (Advanced Mathematical Methods-II)	CO17	Students will get a clear knowledge about Cartesian and general tensors, transformation of coordinates, group, lie group, lie algebra etc. which help them in future in formulating various complex mathematical problems.
	DSE-B1 (Nuclear and Particle Physics)	CO18	 On completing the Nuclear & Particle Physics course, students will get a clear idea about Nuclear model, reactions and interactions of radiation with matter. Detectors , accelerators and the concepts of particle physics and the quark model
Semester 6	CC13 (E.M Theory)	CO13	Students will be taught different coordinate systems. This course helps them to familiarize with the different concepts of electrostatic, magneto static and time varying electromagnetic systems, and their applications in practical problems. Students will have strengthened their concepts by the experiments based on e.m theory.

CC14 (Statistical Mechanics)	CO14	 Students will get the idea of basic statistical methods and concepts. thermodynamical parameters. Computaion of the problems based on statistical theory and plotting functions 		
DSE-A2 (Astronomy and Astrophysics)	CO19	Students will have the basic ideas about astronomica systems, scale and distances .They will learn the techniques of observations of stellar objects, the sun and solar family, the milky way galaxies and the expanding universe.		
DSE-A2 (Advanced Dynamics)	CO20	This Course will give the students a working knowledge of Analytical Mechanics. They will be taught how a physical system might alter or develop over time. A student studying the course will be exposed to various types of oscillations and the wonder of chaos. They will be familiar with the computational visualisation of fractal nature in logistic map		

DSE-B2	CO21	Students will have the basic
(General		concepts of fundamental
Relativity)		principles of the general
-		theory of relativity, the
		equivalence principles,
		inertial frames, motion in
		the gravitational field, time
		dilation and frequency
		shifts, etc. Students can
DSE-B2		apply the mathematical and
(Nano Materials &		physical ideas of the theory
Applications)		of general relativity for the
	CO22	study of various systems in
		astrophysics and
		cosmology.
		After completing this course
		students will be able to:
		• learn about the
		background on Nano
		science,
		• understand the
		synthesis of
		nanomaterials, their
		applications and the
		impact of
		nanomaterials on
		environment.
		understand the basic
		electronic and optical
		nanomaterial properties and
		application in various
		electronics devices.

Mapping of PO AND CO

PO1	PO2	PO3	PO4	PO5	PO6	PO7
Logical	Laborator	Communicati	Environment	Ethics	Social	Self
thinking	y skill	on skill	al aspects		interacti	improvement
					ve skill	and lifelong
						learning

CO1	C01	C023	CO26	CO18	CO2	CO1
CO5	CO2	CO24	CO19	CO9	CO3	CO3
CO7	CO3	CO25	CO22	CO4	CO4	CO7
CO8	CO4	CO26	CO13	CO3	CO6	CO5
CO10	CO5	CO16	CO9	CO6	CO9	CO8
CO15	CO6		CO3	CO26	CO13	CO10
CO17	CO7		CO4		CO18	CO15
	CO8				CO22	CO16
	CO9					CO17
	CO10					CO19
	CO11					CO20
	CO12					CO21
	CO13					CO22
	CO14					CO23
	CO20					CO24
						CO25